Хром

Хром. Приоритет открытия хрома принадлежит французскому ученому Л.Н. Воклену, который в 1797 г. представил в Парижскую Академию наук образцы нового металла - хромат свинца, полученного из природного соединения - крокоита.

Первые попытки применения хрома в роли легирующего элемента относятся к 1821 г., когда была получена первая хромистая сталь. Это и было начало трудовой деятельности хрома. Металлурги достойно оценили влияние хрома на свойства стали и на сегодняшний день, можно сказать, хром - это легирующий элемент номер один. Сталей, легированных хромом, чрезвычайно много. Обычно принято подразделять такие стали на низко- и высоколегированные. Первые содержат, как правило, не более 1,6, а вторые - более 12 % хрома.

Конструкционные стали, содержащие хрома от 0,6 до 1,6 %, имеют повышенную прочность и твердость. Хром также улучшает прокаливаемость. Например, сталь 40 имеет предел прочности 580 МПа, предел текучести 340 МПа, относительное удлинение 19 %. А сталь марки 40Х имеет аналогичные показатели, соответственно, 1000 МПа, 800 МПа, 13 %; прокаливаемость при этом возрастает в 3 раза. Вот что значит 1 % хрома в стали. Из хромистых сталей изготовляют валы, зубчатые колеса, толкатели, болты, шпильки и другие детали.

При добавлении в железо более 12 % хрома происходят поразительные изменения. Такой сплав при обыкновенных условиях не подвергается коррозии. Это свойство было впервые открыто в 1911 г., а 1913 г. считается годом начала промышленного производства хромистой нержавеющей стали. Еще спустя 10 лет было освоено производство хромоникелевой нержавеющей стали.

Чем объясняется высокая коррозионная стойкость хромистых сталей? При введении хрома в сталь происходит резкое увеличение потенциала твердого раствора а-железа и на поверхности металла образуется тончайшая плотная окисная пленка - поверхность металла изолируется от воздействия внешней среды.

Естественно, что хромистые стали нашли широкое применение. Однако есть у хромистых сталей недостаток - из них нельзя получить листовой прокат. Эта очень важная проблема все же была решена созданием хромоникелевой стали типа Х18Н9. Подобные стали прокатываются и их коррозионная стойкость стала еще выше. Дело в том, что никель, вводимый в хромистую нержавеющую сталь в количестве более 8 %, переводит ее в аустенитное состояние. А однородная структура аустенита, естественно, исключает возникновение микрогальванических элементов на поверхности деталей, изготовленных из такой стали.

Дальнейшая эксплуатация стали типа Х18Н9 показала, что., если при работе деталь из такой стали подвергалась нагреву до 500  700 °С, то появлялось коррозионное разрушение по границам зерен. Такая коррозия называется межкристаллитной. Оказывается, в данном интервале температур происходит нарушение однородности аусте-нитной структуры вследствие выделения карбидов хрома и соединений, очень богатых хромом. Очевидно, такой процесс сопровождается уменьшением содержания хрома в прилегающих к карбиду хрома участках твердого раствора. В среде электролита карбиды хрома становятся катодами, а обедненные хромом зоны аустенита - анодными участками. Особенно неблагоприятно выделение карбидов хрома по границам зерен. Обедненные хромом границы зерен подвергаются коррозии, и общее коррозионное разрушение приобретает наиболее опасный межкристаллитный характер.
Опасность устраняется, если в указанную хромоникелевую сталь добавить 1 % титана, который является наиболее активным карбидо-образующим элементом. При нагреве до температур 500-700 °С титан опережает хром, не дает ему соединиться с углеродом, образует карбиды титана и менее активный хром вынужден продолжать выполнять свою благородную задачу - обеспечивать высокий электродный потенциал аустенита. Надо отдать должное металлургам и металловедам - подобный способ борьбы с межкристалитной коррозией оригинален и, главное, эффективен.

Введение титана как легирующего элемента, т. е. более 0,025 %, помимо только что отмеченного благоприятного влияния, обеспечивает более высокую жаростойкость, сопротивление износу, получение мелкозернистой структуры, более полное удаление вредных примесей. Иногда титан заменяют ниобием. Ниобий оказывает аналогичное влияние на свойства хромоникелевой нержавеющей стали, и можно было бы всегда применять ниобий, если бы не высокая цена. Ниобий более чем в 30 раз дороже титана. Поэтому заменяют титан ниобием лишь тогда, когда листовой прокат поступает для получения сварных конструкций. Титан при сварке выгорает, а ниобий, как более тугоплавкий металл, не выгорает, и высокие антикоррозионные свойства сварных швов сохраняются.

Дальнейшее повышение коррозионной стойкости сталей типа Х18Н9Т пошло по пути уменьшения углерода в стали, что приводит к снижению содержания карбидов. Появились стали с пониженным содержанием углерода. Примерами таких сталей являются стали марок 0Х18Н9Т (углерода менее 0,08%), 00Х18Н9Т (углерода менее 0,04 %), 000Х18Н9Т (углерода менее 0,02%). Эти стали хорошо свариваются и применяются для изготовления трубопроводов, выхлопных конусов, деталей камер сгорания, диафрагм, листовых металлических частей турбины, емкостей заправочного и другого аналогичного оборудования.

Хромистые нержавеющие стали марок 12X13, 20X13 применяются для изготовления деталей топливной аппаратуры, соединительных элементов трубопроводов, клапанов, предметов домашнего обихода, а стали марок 28X13 и 40X13 -для изготовления хирургического инструмента, пружин и других деталей, работающих в слабоагрессивных средах (воздух, пар, вода).

Большая группа специальных сталей и сплавов носит название жаропрочных. Они способны длительное время работать при высоких температурах в сложнонапряженном состоянии при одновременном воздействии агрессивной внешней среды. Это стали и сплавы, которые содержат много легирующих элементов, главным из них является никель. Но обойтись без хрома и здесь пока невозможно. А низколегированные жаропрочные и жаростойкие сплавы не содержат никеля, но хром - обязательно.

Необходимый уровень жаропрочности достигается в сталях типа 12Х2МФСР, 12Х2МФБ (ЭИ531) за счет комплексного легирования. Легирующие элементы повышают силы связи атомов в кристаллической решетке железа, вызывают дисперсионное твердение, стабилизируют карбидную фазу. Все эти факторы и обусловливают повышенную жаропрочность.

Одной из самых заслуженных жаропрочных сталей является сталь ЭИ69. Эта сталь была применена впервые в нашей стране в 1939 г. для лопаток и дисков газовых турбин. Она применяется и сегодня, но не как турбинная сталь, а как сталь для клапанов поршневых двигателей, для крепежных деталей. И это закономерно - рабочие температуры за этот период существенно возросли.

Жаропрочные сплавы обычно называют «на никелевой основе», на основе «железа и никеля». Но и хрома в этих сплавах содержится до 30 %, а в сплавах типа ВХ-4 до 66 % хрома. Такие сплавы могут работать при температурах до 1200 °С.

Необходимо отметить, что долгое время существовало мнение о неперспективности сплавов на основе хрома из-за свойственной хрому хрупкости при обыкновенных температурах. Но человек-исследователь решил: хром не первый неподдающийся металл, были и потруднее. И начал освоение непокорного. Вначале добился повышения чистоты при плавке, применяя рафинирование, раскисление и денитрирование. Хром стал менее хрупким, но не настолько, чтобы стать пригодным для изготовления из него деталей. Ввели модифицирование при кристаллизации, всестороннее сжатие при обработке давлением - хром стал еще менее хрупким. Но этого было недостаточно. Только при образовании двухфазной структуры, при которой одна фаза была более пластичной по сравнению с другой, получили пластичный хром и сплавы на его основе с температурой перехода в хрупкое состояние ниже минус 60 °С.

В последние годы в нашей стране и за рубежом появились необычные нержавеющие стали типа СН-2. Их называют стареющими нержавеющими или сверхпрочными. Почти трехкратное повышение прочности достигается комплексным влиянием легирующих элементов {в основном меди, титана и алюминия), которые при старении способствуют образованию карбидов и протеканию ряда других процессов. Но не только высокая прочность является достоинством сталей данной группы. Например, сталь ВСН-2 обладает отличной свариваемостью многими видами сварки, она не требует термической обработки сварного шва, сварные швы отличаются высокой пластичностью и ударной вязкостью, сварка не вызывает поводки (коробления) изделия. Последнее объясняется малым содержанием углерода и низкой температурой мартенситного превращения.

Многие резервы данной группы сталей еще не использованы, многие еще не выявлены, но то, что их внедрение в различные отрасли современной техники является одним из направлений по созданию машин с минимальной материалоемкостью,- это очевидно.

С 1970 г. хром получил новую профессию - защищать сталь от коррозии: ученые разработали методы хромирования. К 20-м годам нашего века методы покрытия поверхности металлов металлическим хромом были доведены до их практического применения. Установлено, что даже тончайшее покрытие в 0,005 мм дает эффект защиты от коррозии. Такие покрытия отличаются высокой устойчивостью против химических, механических и термических воздействий.

Широкое применение имеют соединения хрома. Например, в огнеупорной промышленности применяются хромиты (кислородные соединения хрома), отличающиеся высокими химической инертностью и температурой плавления. В дубильном производстве и при изготовлении красителей без соединений хрома пока обойтись просто невозможно.

Большое значение для промышленности имеют сплавы на основе карбида хрома, которые используются в производстве фильер для волочения проволоки, вкладышей пресс-форм, вырубных штампов и других быстроизнашивающихся деталей (деталей насосов, клапанов в устройствах перекачки кислот в химическом машиностроении и др.).

Фосфид хрома применяется в качестве наполнителя при изготовлении шлифовальных кругов.

Несмотря на то что хром является широко распространенным металлом в природных месторождениях, цены за последние 30 лет на хром практически не снизились. Причинами являются возрастающая потребность в этом металле и трудность получения чистого хрома.

Цена 1 т хрома в 1983 г. составляла 3570 р.

Металлы: